Produit
TECTA-B16
Système automatisé de détection microbiologique - ENDETEC®
Demandez un devis pour le TECTA-B16 ou une solution équivalente
Demander un devis
Description
Système de test microbiologique complet, autonome et automatisé capable de fournir des résultats fiables et de qualité laboratoire sur site en un temps record.
Type de produit
Ce produit a été créé et référencé pour le bon fonctionnement de la plateforme
Questions / Actualités
Questions
Nouvelle réponse
- Le 15/01/2024
Quelles sont les dernières évolutions dans la surveillance microbiologique ?
Réponse :
La surveillance microbiologique a connu plusieurs évolutions importantes ces dernières années, avec le développement de technologies et de méthodes visant à accroître la rapidité, la précision, la facilité d'utilisation et l'automatisation. Voici quelques-unes des dernières avancées dans ce domaine :
1. **Cytométrie en flux automatisée** : Des systèmes comme le BactoSense et le BactoSense Multi utilisent la cytométrie en flux pour identifier et quantifier les bactéries dans les échantillons d'eau. Cette technologie offre un décompte rapide et précis des bactéries, souvent en quelques minutes seulement, par opposition aux méthodes traditionnelles qui peuvent prendre plusieurs jours.
2. **Tests sur site et automatisés** : Des solutions comme le système ALERT de Fluidion ou le TECTA-B16 offrent des capacités d'analyse microbiologique automatisée directement sur le site d'échantillonnage, permettant une détection précoce des contaminants microbiens et une réponse rapide aux événements de contamination.
3. **Techniques moléculaires** : L'utilisation de techniques telles que la PCR en temps réel (qPCR) et la séquençage de nouvelle génération (NGS) permet une détection et une caractérisation rapides et précises des pathogènes microbiens à partir d'échantillons environnementaux.
4. **Tests chromogéniques et fluorogéniques** : Les réactifs chromogéniques et fluorogéniques sont utilisés dans des tests tels que Pseudalert pour la détection rapide de Pseudomonas aeruginosa et Colilert-18 pour E. coli et coliformes, qui changent de couleur ou fluorescent sous l'action de bactéries spécifiques, ce qui permet une lecture plus rapide et plus facile des résultats.
5. **Utilisation de l'ATP-métrie** : Les analyseurs comme la série EZ7300 mesurent les quantités d'ATP (adénosine triphosphate) pour évaluer rapidement la charge microbiologique totale dans les échantillons d'eau, donnant une image instantanée de la qualité microbiologique.
6. **Systèmes de détection électrochimiques** : Ces systèmes, qui détectent les changements dans les propriétés électrochimiques des échantillons dus à l'activité microbienne, sont en cours de développement pour offrir une surveillance en temps réel et sans marqueurs des contaminants microbiens.
7. **Intelligence artificielle et analyse de données** : L'intégration de l'intelligence artificielle (IA) dans les systèmes de surveillance microbiologique permet d'améliorer les prédictions et la détection des tendances, ainsi que d'optimiser les actions de maintenance prédictive des équipements.
8. **Technologies portables et connectées** : L'essor des dispositifs portables et connectés permet une collecte et une analyse des données en continu, avec transmission sans fil vers une plateforme centrale ou cloud pour une surveillance à distance et en temps réel.
9. **Échantillonneurs automatiques** : Des équipements comme ALERT LAB de Fluidion peuvent collecter et analyser automatiquement des échantillons, et transmettre les données à distance, améliorant ainsi la fréquence et la fiabilité des mesures.
Chacune de ces technologies représente une avancée significative dans la surveillance microbiologique, offrant des avantages en termes de sensibilité, de spécificité, de rapidité et de commodité par rapport aux méthodes traditionnelles basées sur la culture. Ces évolutions contribuent à une meilleure gestion des risques microbiologiques dans divers contextes, tels que l'approvisionnement en eau potable, le contrôle des eaux usées, la sécurité alimentaire et l'hygiène hospitalière.
1. **Cytométrie en flux automatisée** : Des systèmes comme le BactoSense et le BactoSense Multi utilisent la cytométrie en flux pour identifier et quantifier les bactéries dans les échantillons d'eau. Cette technologie offre un décompte rapide et précis des bactéries, souvent en quelques minutes seulement, par opposition aux méthodes traditionnelles qui peuvent prendre plusieurs jours.
2. **Tests sur site et automatisés** : Des solutions comme le système ALERT de Fluidion ou le TECTA-B16 offrent des capacités d'analyse microbiologique automatisée directement sur le site d'échantillonnage, permettant une détection précoce des contaminants microbiens et une réponse rapide aux événements de contamination.
3. **Techniques moléculaires** : L'utilisation de techniques telles que la PCR en temps réel (qPCR) et la séquençage de nouvelle génération (NGS) permet une détection et une caractérisation rapides et précises des pathogènes microbiens à partir d'échantillons environnementaux.
4. **Tests chromogéniques et fluorogéniques** : Les réactifs chromogéniques et fluorogéniques sont utilisés dans des tests tels que Pseudalert pour la détection rapide de Pseudomonas aeruginosa et Colilert-18 pour E. coli et coliformes, qui changent de couleur ou fluorescent sous l'action de bactéries spécifiques, ce qui permet une lecture plus rapide et plus facile des résultats.
5. **Utilisation de l'ATP-métrie** : Les analyseurs comme la série EZ7300 mesurent les quantités d'ATP (adénosine triphosphate) pour évaluer rapidement la charge microbiologique totale dans les échantillons d'eau, donnant une image instantanée de la qualité microbiologique.
6. **Systèmes de détection électrochimiques** : Ces systèmes, qui détectent les changements dans les propriétés électrochimiques des échantillons dus à l'activité microbienne, sont en cours de développement pour offrir une surveillance en temps réel et sans marqueurs des contaminants microbiens.
7. **Intelligence artificielle et analyse de données** : L'intégration de l'intelligence artificielle (IA) dans les systèmes de surveillance microbiologique permet d'améliorer les prédictions et la détection des tendances, ainsi que d'optimiser les actions de maintenance prédictive des équipements.
8. **Technologies portables et connectées** : L'essor des dispositifs portables et connectés permet une collecte et une analyse des données en continu, avec transmission sans fil vers une plateforme centrale ou cloud pour une surveillance à distance et en temps réel.
9. **Échantillonneurs automatiques** : Des équipements comme ALERT LAB de Fluidion peuvent collecter et analyser automatiquement des échantillons, et transmettre les données à distance, améliorant ainsi la fréquence et la fiabilité des mesures.
Chacune de ces technologies représente une avancée significative dans la surveillance microbiologique, offrant des avantages en termes de sensibilité, de spécificité, de rapidité et de commodité par rapport aux méthodes traditionnelles basées sur la culture. Ces évolutions contribuent à une meilleure gestion des risques microbiologiques dans divers contextes, tels que l'approvisionnement en eau potable, le contrôle des eaux usées, la sécurité alimentaire et l'hygiène hospitalière.
Nouvelle réponse
- Le 23/12/2023
Quelles sont les méthodes rapides pour détecter des micro-organismes dans les aliments?
Réponse :
Pour détecter rapidement des micro-organismes dans les aliments, plusieurs méthodes et technologies de pointe sont disponibles. Voici certaines des méthodes les plus rapides et les plus précises :
1. **Cytométrie en flux** : Cette technique permet de compter et d'analyser les cellules microbiennes en suspens dans un liquide. Les appareils tels que le BactoSense utilisent la cytométrie en flux pour fournir des résultats rapides sur la présence et la concentration de bactéries dans les échantillons d'eau, ce qui peut être adapté pour certains types d'aliments liquides ou semi-liquides.
2. **PCR en temps réel (qPCR)** : La PCR quantitatif en temps réel est une méthode moléculaire très sensible qui amplifie l'ADN des micro-organismes cibles pour une détection rapide et spécifique. Cette technique est particulièrement utile pour identifier des pathogènes spécifiques tels qu'E. coli ou Salmonella dans les aliments.
3. **Tests immunologiques** : Les tests basés sur des anticorps, tels que les ELISA (enzyme-linked immunosorbent assay), permettent de détecter rapidement la présence de micro-organismes ou de leurs toxines dans les aliments grâce à une réaction antigène-anticorps.
4. **Biosenseurs** : Les biosenseurs sont des dispositifs analytiques qui combinent un composant biologique avec un détecteur physico-chimique. Ils peuvent fournir une détection rapide et sur place de micro-organismes dans les aliments en mesurant la production de métabolites ou en utilisant des sondes moléculaires spécifiques.
5. **Méthodes de culture rapide** : Des kits de culture rapide tels que Compact Dry fournissent un milieu de culture déshydraté prêt à l'emploi pour la croissance de colonies bactériennes spécifiques. Ces tests sont simplifiés pour une utilisation facile et des résultats rapides par rapport aux méthodes de culture traditionnelles.
6. **Technologies de bioluminescence** : La détection de l'ATP (adénosine triphosphate), une molécule présente dans toutes les cellules vivantes, par la bioluminescence est une méthode rapide pour évaluer la contamination microbienne. Des appareils portables permettent de mesurer les niveaux d'ATP dans les aliments et de donner une estimation de la charge microbienne.
7. **Chromogénie et fluorogénie** : Certaines méthodes de test utilisent des substrats chromogéniques ou fluorogéniques qui produisent une couleur ou une fluorescence en présence d'enzymes spécifiques produites par les micro-organismes. Par exemple, le test Colilert-18 détecte les coliformes et E. coli en utilisant un substrat qui change de couleur lorsqu'il est hydrolysé par les bactéries.
8. **Système automatisé de détection microbiologique** : Le TECTA-B16 est un exemple de système automatisé qui peut fournir des résultats de qualité laboratoire sur site en un temps record. Ce type de système est conçu pour la surveillance en continu et la détection rapide de micro-organismes pathogènes dans l'eau, pouvant être adapté pour les liquides alimentaires.
Chacune de ces méthodes a ses propres avantages et limites, et le choix de la méthode dépendra de la nature de l'échantillon alimentaire, des types de micro-organismes ciblés, de la précision requise et des ressources disponibles. En outre, l'adéquation des méthodes d'essai avec les réglementations en vigueur et les standards de l'industrie alimentaire doit également être prise en compte.
1. **Cytométrie en flux** : Cette technique permet de compter et d'analyser les cellules microbiennes en suspens dans un liquide. Les appareils tels que le BactoSense utilisent la cytométrie en flux pour fournir des résultats rapides sur la présence et la concentration de bactéries dans les échantillons d'eau, ce qui peut être adapté pour certains types d'aliments liquides ou semi-liquides.
2. **PCR en temps réel (qPCR)** : La PCR quantitatif en temps réel est une méthode moléculaire très sensible qui amplifie l'ADN des micro-organismes cibles pour une détection rapide et spécifique. Cette technique est particulièrement utile pour identifier des pathogènes spécifiques tels qu'E. coli ou Salmonella dans les aliments.
3. **Tests immunologiques** : Les tests basés sur des anticorps, tels que les ELISA (enzyme-linked immunosorbent assay), permettent de détecter rapidement la présence de micro-organismes ou de leurs toxines dans les aliments grâce à une réaction antigène-anticorps.
4. **Biosenseurs** : Les biosenseurs sont des dispositifs analytiques qui combinent un composant biologique avec un détecteur physico-chimique. Ils peuvent fournir une détection rapide et sur place de micro-organismes dans les aliments en mesurant la production de métabolites ou en utilisant des sondes moléculaires spécifiques.
5. **Méthodes de culture rapide** : Des kits de culture rapide tels que Compact Dry fournissent un milieu de culture déshydraté prêt à l'emploi pour la croissance de colonies bactériennes spécifiques. Ces tests sont simplifiés pour une utilisation facile et des résultats rapides par rapport aux méthodes de culture traditionnelles.
6. **Technologies de bioluminescence** : La détection de l'ATP (adénosine triphosphate), une molécule présente dans toutes les cellules vivantes, par la bioluminescence est une méthode rapide pour évaluer la contamination microbienne. Des appareils portables permettent de mesurer les niveaux d'ATP dans les aliments et de donner une estimation de la charge microbienne.
7. **Chromogénie et fluorogénie** : Certaines méthodes de test utilisent des substrats chromogéniques ou fluorogéniques qui produisent une couleur ou une fluorescence en présence d'enzymes spécifiques produites par les micro-organismes. Par exemple, le test Colilert-18 détecte les coliformes et E. coli en utilisant un substrat qui change de couleur lorsqu'il est hydrolysé par les bactéries.
8. **Système automatisé de détection microbiologique** : Le TECTA-B16 est un exemple de système automatisé qui peut fournir des résultats de qualité laboratoire sur site en un temps record. Ce type de système est conçu pour la surveillance en continu et la détection rapide de micro-organismes pathogènes dans l'eau, pouvant être adapté pour les liquides alimentaires.
Chacune de ces méthodes a ses propres avantages et limites, et le choix de la méthode dépendra de la nature de l'échantillon alimentaire, des types de micro-organismes ciblés, de la précision requise et des ressources disponibles. En outre, l'adéquation des méthodes d'essai avec les réglementations en vigueur et les standards de l'industrie alimentaire doit également être prise en compte.
Nouvelle réponse
- Le 19/12/2023
Quels sont les différents types de tests microbiologiques pour détecter les micro-organismes dans les aliments?
Réponse :
Les tests microbiologiques des aliments sont essentiels pour garantir leur sécurité et leur qualité. Plusieurs méthodes sont utilisées pour détecter et quantifier les micro-organismes dans les produits alimentaires. Voici les principaux types de tests microbiologiques :
1. **Méthodes de culture** : Ces méthodes traditionnelles impliquent l'ensemencement d'échantillons alimentaires sur des milieux de culture sélectifs ou non sélectifs et l'incubation pour permettre la croissance des micro-organismes. Après l'incubation, les colonies sont comptées et peuvent être soumises à des tests d'identification supplémentaires. Des produits comme Compact Dry simplifient ces méthodes en fournissant des plaques prêtes à l'emploi qui contiennent des milieux de culture déshydratés.
2. **Tests d'indicateurs biologiques** : Des tests comme Colilert-18 détectent la présence de coliformes totaux et d'E. coli, qui sont des indicateurs courants de contamination fécale et de qualité hygiénique des aliments.
3. **Méthodes immunologiques** : Ces tests utilisent des anticorps pour détecter des antigènes spécifiques présents chez certains micro-organismes. Les tests ELISA (enzyme-linked immunosorbent assay) et les tests de type immunochromatographique (bandelettes rapides) sont des exemples de méthodes immunologiques.
4. **Méthodes moléculaires** : Techniques comme la PCR (Polymerase Chain Reaction) permettent de détecter et d'amplifier des séquences d'ADN spécifiques de micro-organismes. La PCR en temps réel (qPCR) fournit une quantification en plus de la détection.
5. **Cytométrie en flux** : Cette technique permet de compter et de caractériser les cellules microbiennes dans un échantillon en les faisant passer dans un faisceau laser. Le BactoSense est un exemple de cytomètre en flux automatique adapté à la surveillance microbiologique de l'eau qui pourrait être utilisé dans le contexte des aliments liquides ou pour surveiller la qualité de l'eau utilisée dans le processus de production alimentaire.
6. **Détecteurs de bioluminescence** : Ces tests mesurent la lumière produite par des réactions enzymatiques impliquant l'ATP (adénosine triphosphate) présent dans toutes les cellules vivantes, y compris les micro-organismes, pour évaluer rapidement la contamination microbienne.
7. **Tests de phytotoxicité** : Bien que moins courants pour les aliments, les tests de phytotoxicité, comme le PHYTOTOXKIT LIQUID SAMPLES, peuvent être utilisés pour évaluer la présence de substances toxiques qui auraient des effets néfastes sur les organismes vivants, y compris les micro-organismes.
8. **Méthodes de détection automatisée** : Des appareils comme le TECTA-B16 permettent l'automatisation des tests de détection microbiologique, offrant des résultats rapides et fiables, et sont particulièrement utiles pour les applications sur site.
Chaque méthode a ses propres avantages et limites en termes de sensibilité, de spécificité, de temps de détection et de coût. Le choix de la méthode dépend de l'objectif du test, du type d'aliment, des micro-organismes ciblés et des ressources disponibles. Dans l'industrie alimentaire, il est fréquent d'utiliser une combinaison de méthodes pour assurer une évaluation complète de la sécurité microbiologique des aliments.
1. **Méthodes de culture** : Ces méthodes traditionnelles impliquent l'ensemencement d'échantillons alimentaires sur des milieux de culture sélectifs ou non sélectifs et l'incubation pour permettre la croissance des micro-organismes. Après l'incubation, les colonies sont comptées et peuvent être soumises à des tests d'identification supplémentaires. Des produits comme Compact Dry simplifient ces méthodes en fournissant des plaques prêtes à l'emploi qui contiennent des milieux de culture déshydratés.
2. **Tests d'indicateurs biologiques** : Des tests comme Colilert-18 détectent la présence de coliformes totaux et d'E. coli, qui sont des indicateurs courants de contamination fécale et de qualité hygiénique des aliments.
3. **Méthodes immunologiques** : Ces tests utilisent des anticorps pour détecter des antigènes spécifiques présents chez certains micro-organismes. Les tests ELISA (enzyme-linked immunosorbent assay) et les tests de type immunochromatographique (bandelettes rapides) sont des exemples de méthodes immunologiques.
4. **Méthodes moléculaires** : Techniques comme la PCR (Polymerase Chain Reaction) permettent de détecter et d'amplifier des séquences d'ADN spécifiques de micro-organismes. La PCR en temps réel (qPCR) fournit une quantification en plus de la détection.
5. **Cytométrie en flux** : Cette technique permet de compter et de caractériser les cellules microbiennes dans un échantillon en les faisant passer dans un faisceau laser. Le BactoSense est un exemple de cytomètre en flux automatique adapté à la surveillance microbiologique de l'eau qui pourrait être utilisé dans le contexte des aliments liquides ou pour surveiller la qualité de l'eau utilisée dans le processus de production alimentaire.
6. **Détecteurs de bioluminescence** : Ces tests mesurent la lumière produite par des réactions enzymatiques impliquant l'ATP (adénosine triphosphate) présent dans toutes les cellules vivantes, y compris les micro-organismes, pour évaluer rapidement la contamination microbienne.
7. **Tests de phytotoxicité** : Bien que moins courants pour les aliments, les tests de phytotoxicité, comme le PHYTOTOXKIT LIQUID SAMPLES, peuvent être utilisés pour évaluer la présence de substances toxiques qui auraient des effets néfastes sur les organismes vivants, y compris les micro-organismes.
8. **Méthodes de détection automatisée** : Des appareils comme le TECTA-B16 permettent l'automatisation des tests de détection microbiologique, offrant des résultats rapides et fiables, et sont particulièrement utiles pour les applications sur site.
Chaque méthode a ses propres avantages et limites en termes de sensibilité, de spécificité, de temps de détection et de coût. Le choix de la méthode dépend de l'objectif du test, du type d'aliment, des micro-organismes ciblés et des ressources disponibles. Dans l'industrie alimentaire, il est fréquent d'utiliser une combinaison de méthodes pour assurer une évaluation complète de la sécurité microbiologique des aliments.
Actualités
Un dossier technique de REVUE EIN a été ajouté(e)
où est cité TECTA-B16
Autres produits du même type
Retrouvez d'autres produits pouvant vous intéresser