Ce flottateur fonctionne sur le principe "de l'annulation des vitesses" qui permet d'obtenir une clarification parfaite en l'absence de turbulences, et ceci dans une cuve avec une hauteur d’eau de seulement 400 mm.
Caractéristique | Valeur |
---|---|
Débit (m³/h) | 120m³/h à 2500m³/h |
Puissance moteur (kW) | 0.7kW à 5.5kW |
Quelles sont les meilleures pratiques pour le dimensionnement d'une unité de traitement des eaux industrielles et des lixiviats ?
### 1. **Caractérisation des Effluents**
- **Analyse Physico-Chimique** : Effectuer une analyse détaillée des effluents pour déterminer les paramètres comme le pH, la DBO (Demande Biologique en Oxygène), la DCO (Demande Chimique en Oxygène), les métaux lourds, les hydrocarbures, les matières solides en suspension (MES), etc.
- **Variabilité des Charges** : Étudier la variabilité des charges polluantes en fonction du temps (journalière, saisonnière) pour prévoir les pics de pollution.
### 2. **Choix des Technologies de Traitement**
- **Prétraitement** : Inclure des étapes de prétraitement comme la dégrillage, le dessablage, et la floculation. Le flottateur à air dissous **KLARICELL RJ** est un exemple d'équipement combinant clarification et filtration sur sable, idéal pour des effluents avec concentration en solides jusqu'à 150 mg/l.
- **Traitement Primaire** : Utiliser des technologies adaptées comme les flottateurs à air dissous (**UNICELL**, **SUPERCELL**), des séparateurs d'hydrocarbures, et des systèmes de décantation.
- **Traitement Secondaire** : Employer des systèmes biologiques comme les réacteurs à membranes bioreactors (**BioBarrier® HSMBR®**, **BioBarrier MarineMBR**), ou des biodisques pour l'élimination de la DBO et DCO.
- **Traitement Tertiaire** : Intégrer des systèmes d’ultrafiltration, d’osmose inverse (**AZUD WATERTECH OSM INDUSTRIAL**), et de désinfection par UV (**BIO-UV Gamme DW**, **Triogen Integra**) pour la réutilisation ou le rejet en milieu naturel.
### 3. **Dimensionnement Hydraulique**
- **Débit** : Calculer le débit moyen et de pointe des effluents à traiter. Par exemple, la tour de dégazage mobile **MODA 100** peut traiter jusqu'à 100 m³/h.
- **Temps de Retention** : Déterminer les temps de rétention nécessaires pour chaque étape de traitement pour garantir une efficacité maximale. Cela inclut les volumes des bassins de rétention et de traitement.
### 4. **Équipements spécifiques**
- **Stations de Pompage** : Pour le transfert des eaux usées, des équipements comme **ACQUA-PUMP** sont essentiels pour des applications maritimes ou industrielles nécessitant un transfert de 12 m³/heure.
- **Systèmes de Flottation** : **KLARICELL RJ** offre une solution de flottation et filtration intégrée, tandis que **UNICELL** est adapté aux effluents gras et chargés.
- **Désionisation** : Pour des applications nécessitant une haute pureté de l'eau, les unités mobiles de désionisation comme **MODI 15000** peuvent être utilisées.
### 5. **Automatisation et Contrôle**
- **Systèmes de Télégestion** : Intégrer des systèmes comme **BW-AUTOMATIQUE®** pour l'automatisation et la surveillance à distance du fonctionnement de l'unité de traitement, incluant le contrôle des pompes et des filtres.
- **Capteurs et Moniteurs** : Utiliser des capteurs pour le contrôle en temps réel des paramètres critiques comme la qualité de l'eau, les niveaux de pollution, et la performance des équipements.
### 6. **Réglementations et Normes**
- **Conformité** : Assurer que toutes les technologies et pratiques utilisées sont conformes aux normes locales et internationales. Par exemple, les systèmes UV de la gamme **BIO-UV DW** sont certifiés ACS UV pour la potabilisation de l'eau.
- **Certifications** : Choisir des équipements avec des certifications pertinentes comme **CE**, **NSF/ANSI**, **MARPOL**, et **USCG** pour garantir la qualité et la fiabilité du traitement.
### 7. **Évolutivité et Flexibilité**
- **Modularité** : Concevoir des systèmes modulaires qui peuvent être facilement étendus ou modifiés pour répondre aux besoins futurs. Par exemple, la gamme **BIO-SEA Lowflo** offre une modularité pour s'adapter à différents débits et configurations de navires.
- **Maintenance** : Prévoir des équipements avec une maintenance facile et des coûts d'exploitation réduits. Les systèmes comme **BioBarrier® HSMBR®** sont conçus pour une maintenance minimale et une efficacité maximale.
En suivant ces meilleures pratiques, le dimensionnement et la conception d'une unité de traitement des eaux industrielles et des lixiviats peuvent être optimisés pour garantir une performance fiable, une conformité réglementaire et une durabilité environnementale.
Quel est le meilleur procédé pour décontaminer les eaux usées issues de la production de pétrole brut ?
1. Séparation par gravité : Elle est souvent le premier pas dans le traitement des eaux de production pétrolière. Cette méthode permet de séparer les gouttelettes d'huile des eaux usées par différence de densité. Un séparateur API ou un décanteur lamellaire (comme le Lamella Settler de KWI France) peut être utilisé dans cette étape.
2. Traitement physico-chimique : La flottation à air dissous (DAF) est une technique courante pour éliminer les huiles et les graisses, ainsi que des solides en suspension. Des systèmes comme le MEGACELL H ou le SUPERCELL peuvent être adaptés à cette application.
3. Filtration : La filtration sur membrane, par exemple à l'aide de membranes céramiques plates (comme celles du CFM BRM), peut être employée pour séparer les fines particules et certains types de polluants.
4. Traitement biologique : Il peut être utilisé pour dégrader les composés organiques biodegradables. Les bioréacteurs à membranes (MBR), tels que le MBCR, peuvent être efficaces.
5. Désinfection UV : Si une désinfection est nécessaire, des systèmes de traitement par UV comme la gamme BIO-UV IAM peuvent être utilisés pour éliminer les bactéries pathogènes sans ajouter de produits chimiques au processus.
6. Osmose inverse : Pour les contaminants dissous comme les sels, un système d'osmose inverse peut être nécessaire, bien qu'il soit généralement coûteux en termes d'énergie et de maintenance.
7. Évaporation ou cristallisation : Pour une concentration élevée de sels ou d'autres contaminants, des technologies d'évaporation comme le Turbevap LD40 peuvent être envisagées pour obtenir une séparation plus poussée.
8. Adsorption : L'utilisation de charbon actif ou d'autres adsorbants peut aider à éliminer les contaminants organiques résiduels.
Le choix du procédé ou de la combinaison de procédés dépendra d'une analyse détaillée des eaux usées et des objectifs de traitement. Il est également important de prendre en compte l'aspect économique et la facilité d'exploitation et de maintenance du système de traitement. Enfin, il faut toujours s'assurer que le traitement choisi respecte les réglementations environnementales en vigueur.
Quelle est la méthode appropriée pour traiter les eaux usées d'une cabine de peinture de 50m2?
1. **Séparation Primaire :**
- **Décantation :** Les eaux usées sont d'abord dirigées vers une chambre de décantation où les particules les plus lourdes peuvent se déposer. Un équipement comme le **CHC-D de Salher** pourrait être utilisé ici, car il offre une phase de décantation-digestion.
2. **Traitement Physico-chimique :**
- **Coagulation/Floculation :** Des coagulants et des floculants sont ajoutés pour agglomérer les fines particules en suspensions, facilitant ainsi leur élimination. Des réactifs spécifiques peuvent être nécessaires pour traiter les résidus de peinture et les métaux lourds.
- **Flottation par Air Dissous (DAF) :** Après coagulation et floculation, un système de flottation tel que le **SUPERCELL ou l'UNICELL BF DAF** peut être utilisé pour séparer les flocs formés de l'eau par flottaison grâce à l'injection de microbulles d'air.
3. **Filtration :**
- **Filtres à Sable ou Multimédia :** Pour un traitement plus fin des particules restantes, une filtration à travers des médias filtrants comme le sable ou des matériaux composites peut être nécessaire.
- **Filtration Membranaire :** Pour des exigences de qualité plus élevées, des technologies de filtration membranaire comme le **BioBarrier® GWMBR®** peuvent être employées pour retirer les particules fines, les bactéries et autres micropolluants.
4. **Traitement Biologique (si requis) :**
- **Traitement Anaérobie/Aérobie :** Selon la nature des eaux usées, un traitement biologique peut être nécessaire pour dégrader les composés organiques. Des systèmes comme l'**Evac MBR**, qui combine un traitement biologique avec une filtration membranaire, pourraient être appropriés.
5. **Traitement des Boues :**
- **Digestion des Boues :** Les boues issues de la décantation et du traitement physico-chimique doivent être traitées, souvent par digestion anaérobie, pour réduire leur volume et les stabiliser.
- **Déshydratation des Boues :** Après digestion, les boues sont déshydratées pour faciliter leur élimination ou leur réutilisation. Des équipements comme des filtres-presse ou des centrifugeuses peuvent être utilisés.
6. **Traitement Complémentaire :**
- **Charbon Actif :** Pour éliminer les résidus de solvants et autres COV, un passage sur charbon actif peut être nécessaire.
- **Traitement UV ou Ozone :** Pour une désinfection finale, des traitements par UV ou par ozone peuvent être mis en place pour éliminer les micro-organismes pathogènes restants.
7. **Monitoring et Contrôle :**
- **Analyse de Qualité de l'Eau :** Des analyses régulières doivent être effectuées pour s'assurer que l'eau traitée respecte les normes avant rejet.
- **Systèmes de Contrôle :** Des systèmes de contrôle en temps réel, comme le **Fuzzy Four™**, peuvent être utilisés pour optimiser le processus de traitement et assurer la conformité réglementaire.
Il est important de noter que le traitement spécifique peut varier selon les réglementations locales, la composition précise des eaux usées et les objectifs de traitement. Une étude de faisabilité et un bilan massique seront nécessaires pour déterminer l'équipement et les procédés précis à utiliser. Une collaboration avec des spécialistes en traitement des eaux industrielles est fortement recommandée pour concevoir un système sur mesure répondant aux besoins spécifiques de la cabine de peinture.
SUPERCELL Flottateur à air dissous pour grands débits
Traitement des eaux industrielles , Matériel pour station de traitement des eaux
Supercell • Traitement de l'eau / Global wastewater treatment solutions • KWI France
Certifications |
---|
ISO 14001 |
ISO 9001 |
Posez une question sur le produit
Poser une questionQuelles sont les meilleures pratiques pour le dimensionnement d'une unité de traitement des eaux industrielles et des lixiviats ?
### 1. **Caractérisation des Effluents**
- **Analyse Physico-Chimique** : Effectuer une analyse détaillée des effluents pour déterminer les paramètres comme le pH, la DBO (Demande Biologique en Oxygène), la DCO (Demande Chimique en Oxygène), les métaux lourds, les hydrocarbures, les matières solides en suspension (MES), etc.
- **Variabilité des Charges** : Étudier la variabilité des charges polluantes en fonction du temps (journalière, saisonnière) pour prévoir les pics de pollution.
### 2. **Choix des Technologies de Traitement**
- **Prétraitement** : Inclure des étapes de prétraitement comme la dégrillage, le dessablage, et la floculation. Le flottateur à air dissous **KLARICELL RJ** est un exemple d'équipement combinant clarification et filtration sur sable, idéal pour des effluents avec concentration en solides jusqu'à 150 mg/l.
- **Traitement Primaire** : Utiliser des technologies adaptées comme les flottateurs à air dissous (**UNICELL**, **SUPERCELL**), des séparateurs d'hydrocarbures, et des systèmes de décantation.
- **Traitement Secondaire** : Employer des systèmes biologiques comme les réacteurs à membranes bioreactors (**BioBarrier® HSMBR®**, **BioBarrier MarineMBR**), ou des biodisques pour l'élimination de la DBO et DCO.
- **Traitement Tertiaire** : Intégrer des systèmes d’ultrafiltration, d’osmose inverse (**AZUD WATERTECH OSM INDUSTRIAL**), et de désinfection par UV (**BIO-UV Gamme DW**, **Triogen Integra**) pour la réutilisation ou le rejet en milieu naturel.
### 3. **Dimensionnement Hydraulique**
- **Débit** : Calculer le débit moyen et de pointe des effluents à traiter. Par exemple, la tour de dégazage mobile **MODA 100** peut traiter jusqu'à 100 m³/h.
- **Temps de Retention** : Déterminer les temps de rétention nécessaires pour chaque étape de traitement pour garantir une efficacité maximale. Cela inclut les volumes des bassins de rétention et de traitement.
### 4. **Équipements spécifiques**
- **Stations de Pompage** : Pour le transfert des eaux usées, des équipements comme **ACQUA-PUMP** sont essentiels pour des applications maritimes ou industrielles nécessitant un transfert de 12 m³/heure.
- **Systèmes de Flottation** : **KLARICELL RJ** offre une solution de flottation et filtration intégrée, tandis que **UNICELL** est adapté aux effluents gras et chargés.
- **Désionisation** : Pour des applications nécessitant une haute pureté de l'eau, les unités mobiles de désionisation comme **MODI 15000** peuvent être utilisées.
### 5. **Automatisation et Contrôle**
- **Systèmes de Télégestion** : Intégrer des systèmes comme **BW-AUTOMATIQUE®** pour l'automatisation et la surveillance à distance du fonctionnement de l'unité de traitement, incluant le contrôle des pompes et des filtres.
- **Capteurs et Moniteurs** : Utiliser des capteurs pour le contrôle en temps réel des paramètres critiques comme la qualité de l'eau, les niveaux de pollution, et la performance des équipements.
### 6. **Réglementations et Normes**
- **Conformité** : Assurer que toutes les technologies et pratiques utilisées sont conformes aux normes locales et internationales. Par exemple, les systèmes UV de la gamme **BIO-UV DW** sont certifiés ACS UV pour la potabilisation de l'eau.
- **Certifications** : Choisir des équipements avec des certifications pertinentes comme **CE**, **NSF/ANSI**, **MARPOL**, et **USCG** pour garantir la qualité et la fiabilité du traitement.
### 7. **Évolutivité et Flexibilité**
- **Modularité** : Concevoir des systèmes modulaires qui peuvent être facilement étendus ou modifiés pour répondre aux besoins futurs. Par exemple, la gamme **BIO-SEA Lowflo** offre une modularité pour s'adapter à différents débits et configurations de navires.
- **Maintenance** : Prévoir des équipements avec une maintenance facile et des coûts d'exploitation réduits. Les systèmes comme **BioBarrier® HSMBR®** sont conçus pour une maintenance minimale et une efficacité maximale.
En suivant ces meilleures pratiques, le dimensionnement et la conception d'une unité de traitement des eaux industrielles et des lixiviats peuvent être optimisés pour garantir une performance fiable, une conformité réglementaire et une durabilité environnementale.
Quel est le meilleur procédé pour décontaminer les eaux usées issues de la production de pétrole brut ?
1. Séparation par gravité : Elle est souvent le premier pas dans le traitement des eaux de production pétrolière. Cette méthode permet de séparer les gouttelettes d'huile des eaux usées par différence de densité. Un séparateur API ou un décanteur lamellaire (comme le Lamella Settler de KWI France) peut être utilisé dans cette étape.
2. Traitement physico-chimique : La flottation à air dissous (DAF) est une technique courante pour éliminer les huiles et les graisses, ainsi que des solides en suspension. Des systèmes comme le MEGACELL H ou le SUPERCELL peuvent être adaptés à cette application.
3. Filtration : La filtration sur membrane, par exemple à l'aide de membranes céramiques plates (comme celles du CFM BRM), peut être employée pour séparer les fines particules et certains types de polluants.
4. Traitement biologique : Il peut être utilisé pour dégrader les composés organiques biodegradables. Les bioréacteurs à membranes (MBR), tels que le MBCR, peuvent être efficaces.
5. Désinfection UV : Si une désinfection est nécessaire, des systèmes de traitement par UV comme la gamme BIO-UV IAM peuvent être utilisés pour éliminer les bactéries pathogènes sans ajouter de produits chimiques au processus.
6. Osmose inverse : Pour les contaminants dissous comme les sels, un système d'osmose inverse peut être nécessaire, bien qu'il soit généralement coûteux en termes d'énergie et de maintenance.
7. Évaporation ou cristallisation : Pour une concentration élevée de sels ou d'autres contaminants, des technologies d'évaporation comme le Turbevap LD40 peuvent être envisagées pour obtenir une séparation plus poussée.
8. Adsorption : L'utilisation de charbon actif ou d'autres adsorbants peut aider à éliminer les contaminants organiques résiduels.
Le choix du procédé ou de la combinaison de procédés dépendra d'une analyse détaillée des eaux usées et des objectifs de traitement. Il est également important de prendre en compte l'aspect économique et la facilité d'exploitation et de maintenance du système de traitement. Enfin, il faut toujours s'assurer que le traitement choisi respecte les réglementations environnementales en vigueur.
Quelle est la méthode appropriée pour traiter les eaux usées d'une cabine de peinture de 50m2?
1. **Séparation Primaire :**
- **Décantation :** Les eaux usées sont d'abord dirigées vers une chambre de décantation où les particules les plus lourdes peuvent se déposer. Un équipement comme le **CHC-D de Salher** pourrait être utilisé ici, car il offre une phase de décantation-digestion.
2. **Traitement Physico-chimique :**
- **Coagulation/Floculation :** Des coagulants et des floculants sont ajoutés pour agglomérer les fines particules en suspensions, facilitant ainsi leur élimination. Des réactifs spécifiques peuvent être nécessaires pour traiter les résidus de peinture et les métaux lourds.
- **Flottation par Air Dissous (DAF) :** Après coagulation et floculation, un système de flottation tel que le **SUPERCELL ou l'UNICELL BF DAF** peut être utilisé pour séparer les flocs formés de l'eau par flottaison grâce à l'injection de microbulles d'air.
3. **Filtration :**
- **Filtres à Sable ou Multimédia :** Pour un traitement plus fin des particules restantes, une filtration à travers des médias filtrants comme le sable ou des matériaux composites peut être nécessaire.
- **Filtration Membranaire :** Pour des exigences de qualité plus élevées, des technologies de filtration membranaire comme le **BioBarrier® GWMBR®** peuvent être employées pour retirer les particules fines, les bactéries et autres micropolluants.
4. **Traitement Biologique (si requis) :**
- **Traitement Anaérobie/Aérobie :** Selon la nature des eaux usées, un traitement biologique peut être nécessaire pour dégrader les composés organiques. Des systèmes comme l'**Evac MBR**, qui combine un traitement biologique avec une filtration membranaire, pourraient être appropriés.
5. **Traitement des Boues :**
- **Digestion des Boues :** Les boues issues de la décantation et du traitement physico-chimique doivent être traitées, souvent par digestion anaérobie, pour réduire leur volume et les stabiliser.
- **Déshydratation des Boues :** Après digestion, les boues sont déshydratées pour faciliter leur élimination ou leur réutilisation. Des équipements comme des filtres-presse ou des centrifugeuses peuvent être utilisés.
6. **Traitement Complémentaire :**
- **Charbon Actif :** Pour éliminer les résidus de solvants et autres COV, un passage sur charbon actif peut être nécessaire.
- **Traitement UV ou Ozone :** Pour une désinfection finale, des traitements par UV ou par ozone peuvent être mis en place pour éliminer les micro-organismes pathogènes restants.
7. **Monitoring et Contrôle :**
- **Analyse de Qualité de l'Eau :** Des analyses régulières doivent être effectuées pour s'assurer que l'eau traitée respecte les normes avant rejet.
- **Systèmes de Contrôle :** Des systèmes de contrôle en temps réel, comme le **Fuzzy Four™**, peuvent être utilisés pour optimiser le processus de traitement et assurer la conformité réglementaire.
Il est important de noter que le traitement spécifique peut varier selon les réglementations locales, la composition précise des eaux usées et les objectifs de traitement. Une étude de faisabilité et un bilan massique seront nécessaires pour déterminer l'équipement et les procédés précis à utiliser. Une collaboration avec des spécialistes en traitement des eaux industrielles est fortement recommandée pour concevoir un système sur mesure répondant aux besoins spécifiques de la cabine de peinture.
Peut-on utiliser les eaux usées domestiques traitées biologiquement pour l'irrigation ?
Pour une utilisation en irrigation, il est crucial que l'eau traitée soit dépourvue de pathogènes et de niveaux élevés de nutriments qui pourraient nuire aux plantes ou à la qualité du sol. Voici quelques technologies et produits qui pourraient être utilisés dans le traitement des eaux usées domestiques avant leur utilisation en irrigation :
1. **Systèmes d'aération immergés** comme LIXOR® de KWI France, qui fournissent de l'oxygène pour soutenir les processus biologiques d'épuration dans les bassins d'aération. Ces systèmes peuvent aider à réduire la demande biochimique en oxygène (DBO) et la demande chimique en oxygène (DCO) des eaux usées.
2. **Unité de traitement containerisée MBCR** de KWI France, qui intègre la biomasse fixée sur supports mobiles et la filtration sur membranes céramique plates. Ce type de système peut améliorer la qualité de l'eau traitée, la rendant plus adaptée pour l'irrigation.
3. **Réacteurs UV** comme la Gamme IAM de BIO-UV pour la désinfection des eaux industrielles, qui peuvent être utilisés en tant que traitement tertiaire pour éliminer les micro-organismes pathogènes des eaux usées traitées biologiquement.
4. **Systèmes de filtration** comme les filtres à sable à lavage continu KS FILTRE de KWI France, qui peuvent éliminer les particules en suspension et les matières organiques supplémentaires des eaux usées épurées.
5. **Flottateurs à air dissous** comme le MINICELL ou le SUPERCELL de KWI France, qui peuvent être utilisés pour clarifier les eaux usées en séparant les matières flottantes et les boues activées.
6. **Microstation éco-énergétique MicroFITT-ee** de KWI France, qui est un système de traitement des eaux usées biologique haute performance pour les petites installations et qui peut fournir une qualité d'effluent adaptée à l'irrigation.
Avant d'utiliser des eaux usées traitées pour l'irrigation, il est essentiel de réaliser des analyses pour s'assurer que les critères de qualité sont respectés, notamment en ce qui concerne les niveaux de nutriments (azote, phosphore), les sels, les métaux lourds et les pathogènes. Les normes locales et nationales, ainsi que les directives internationales comme celles de l'Organisation Mondiale de la Santé (OMS), doivent être prises en compte pour déterminer les exigences de qualité de l'eau pour l'irrigation agricole.
Pas encore de tutoriel sur ce produit